If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5u^2-4u-1=0
a = 5; b = -4; c = -1;
Δ = b2-4ac
Δ = -42-4·5·(-1)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-6}{2*5}=\frac{-2}{10} =-1/5 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+6}{2*5}=\frac{10}{10} =1 $
| -2x+15=67 | | -7.6(x-4.75)=30.4 | | x/6+x/6=3/4 | | x/6+x+3=3/4 | | (x-2)/x=3/6 | | 12w+18w-4+2=5w+2-4 | | 2x/4=26 | | 8x+8-7x=-3 | | (9x+2)/7=8 | | x+6/14=6/7+x-8/5 | | 2=-9n+22n | | -4(2n-50=-8n-20 | | 200m-100+47,750=51000-150m | | 5*b=28 | | 200m-100+47,750=51000-150 | | 4(x-4)/2=4(x+1)/12 | | 3x-8=4x+48 | | 13+3x=34 | | -3+8x=19+2x | | 0.7+140-0.7x=126 | | 11/13y=33 | | 3x5−2x3+15=0 | | 140-0.7x=126 | | 2/3(3x=9)=-2(2x+6) | | k−1=7k+2 | | 35x=91 | | 0.5(40+x)=25 | | 8=-8x+4(4=2x) | | 4(-5x+5)=-3(-3x+3) | | 90r=120-60r | | 1/2(40+x)=25 | | 12-6a=-2a-8a |